AI世界 还少了啥 牛津大学教授Michael Wooldridge现实世界
发布时间:2022-09-30 12:01:03 所属栏目:外闻 来源:转载
导读: 无限猴子定理认为,让一只猴子在打字机上随机地按键,当按键时间达到无穷时,几乎必然能够打出任何给定的文字,比如莎士比亚的全套著作。在这个定理中,“几乎必然”是一个有
无限猴子定理认为,让一只猴子在打字机上随机地按键,当按键时间达到无穷时,几乎必然能够打出任何给定的文字,比如莎士比亚的全套著作。在这个定理中,“几乎必然”是一个有特定含义的数学术语,“猴子”也不是指一只真正意义上的猴子,而是被用来比喻成一台可以产生无限随机字母序列的抽象设备。 在 Wooldridge 看来,虽然 GPT-3 等 AI 模型借助数百亿或数千亿的参数展现出了令人惊讶的能力,但它们的问题不在于处理能力的大小,而在于缺乏来自现实世界的经验。 例如,一个语言模型可能会很好地学习“雨是湿的”,当被问及雨是湿的还是干的时,它很可能会回答雨是湿的,但与人类不同的是,这个语言模型从未真正体验过“潮湿”这种感觉,对它们来说,“湿”只不过是一个符号,只是经常与“雨”等词结合使用。 然而,Wooldridge 也强调,缺乏现实物理世界知识并不能说明 AI 模型无用,也不会阻止某一 AI 模型成为某一领域的经验专家,但在诸如理解等问题上,如果认为 AI 模型具备与人类相同能力的可能性,确实令人怀疑。 相关研究论文以“What Is Missing from Contemporary AI? The World”为题,已发表在《智能计算》(Intelligent Computing)杂志上。 在当前的 AI 创新浪潮中,数据和算力已经成为 AI 系统成功的基础:AI 模型的能力直接与其规模、用于训练它们的资源以及训练数据的规模成正比。 对于这一现象,DeepMind 研究科学家 Richard S. Sutton 此前就曾表示,AI 的“惨痛教训”是,它的进步主要是使用越来越大的数据集和越来越多的计算资源。 (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
站长推荐